Tetrahedron Letters, Vol.31, No.13, pp 1823-1824, 1990 Printed in Great Britain

1a,25-DIHYDROXY-19-NOR-VITAMIN D₃, A NOVEL VITAMIN D-RELATED COMPOUND WITH POTENTIAL THERAPEUTIC ACTIVITY

Kato L. Perlman, Rafal R. Sicinski¹, Heinrich K. Schnoes and Hector F. DeLuca^{*} Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706.

Summary: l_{α} ,25-Dihydroxy-19-nor-vitamin D₃ has been synthesized via oxidative degradation of the l_{\alpha}-hydroxycylcovitamin intermediate.³ Preliminary studies indicate that the new analog induces the differentiation of human leukemia HL-60 cells, with little or no calcemic activity.

The hormone, la, 25-dihydroxyvitamin D_3 (1), is known to be a highly potent regulator of calcium homeostasis in animals and more recently, its activity in cellular differentiation has also been established.² Many structural analogs have been prepared and tested and found to exhibit a highly promising dichotomy between cell differentiation and calcium regulation. This difference in activity may be useful in the treatment of some cancers or osteoporosis.³ In our systematic investigation of structure activity relationship of the vitamin D molecule, we chose to investigate the potency of the 19-nor analogs, i.e. compounds in which the ring A exocyclic methylene group (carbon 19), typical of the vitamin D system, has been removed and replaced by two hydrogen atoms (8).

In this paper we describe the synthesis of 1a,25-dihydroxy-19-nor-vitamin D₂. 25-Hydroxyvitamin D₃ was converted to the la-acetoxy-25-hydroxy-3,5-cyclovitamin D₃ (2),⁴ as described for the la-acetoxy-3,5-cyclovitamin D_3 .⁵ Only the cyclovitamin is a suitable intermediate for a controlled oxidative degradation of vitamin D derivatives.⁶ Cyclovitamin 2 was treated with a slight molar excess of osmium tetroxide in pyridine, according to the procedure of Paaren, 6 to obtain the mixture of diols 3, 7 in 55-60% yield (OsO₄, Pyr, RT, 15 min). 10,19-Dihydroxy compound 3 was subjected to diol cleavage using sodium metaperiodate in methanol at 0° to give the 10-oxo-1a,25-dihydroxycylcovitamin D₂ 4^8 in 60% yield (saturated NaIO, solution in MeOH, 0°, 1 h). The 10-oxo-analog 4 was then reduced with NaBH, in EtOH to give the epimeric 10-alcohol 59 (NaBH, EtOH, 0°C, 16 h) in 63% yield. Alcohols 5 were mesylated with mesyl chloride in the presence of triethylamine (MsCl, TEA, in $CH_{2}Cl_{2}$, $0^{\circ}C$, 1 h), and after evaporation of the solvents, the crude mesylates were treated with LiAlH₄ in THF (LiAlH₄, THF, 0⁰C, 16 h) to give in a nucleophilic displacement reaction the desired la,25-dihydroxy-19-nor-cyclovitamin D, analog 6. Cycloreversion with acetic acid (AcOH, 55°C, 30 min) gave a mixture of 3-acetoxy-la,25-dihydroxy-19-nor-vitamin D₃ and la-acetoxy-25-hydroxy-19-nor-vitamin D₃ 7a and 7b. Overall yields for the 3 steps from the alcohol were 10-12%. KOH-MeOH-ether hydrolysis (0.1 n KOH-MeOH, ether, RT, 2 h) gave the final product of la,25-dihydroxy-19nor-vitamin D₂ §.¹⁰

The new 19-nor analog 8 shows a selective activity profile, combining high potency in inducing differentiation of malignant cells, with very low or no bone calcification activity. The compound of this novel structural class opens up a new field of vitamin D analogs which could be useful as therapeutic agents for the treatment of malignancies. The detailed biological profile of this compound will be published elsewhere.

REFERENCES AND NOTES

- Present address of R.R.S.: University of Warsaw, Department of Chemistry, Warszawa, Poland.
- V. Ostrem, Y. Tanaka, J. Prahl, H. F. DeLuca and N. Ikekawa, <u>Proc. Natl. Acad. Sci.</u> <u>USA</u>, 1987, <u>84</u>, 2610.
- H. Sai, S. Takatsuto, N. Ikekawa, Y. Tanaka and H. F. DeLuca, <u>Chem. Pharm. Bull.</u>, 1986, <u>34</u>, 4508.
- 4. H. E. Paaren, H. F. DeLuca and H. K. Schnoes, J. Org. Chem., 1980, 45, 3253.
- 5. H. E. Paaren, H. K. Schnoes and H. F. DeLuca, J. Org. Chem., 1983, <u>48</u>, 3819.
- 6. Satisfactory spectral characterization of all intermediates was obtained.
- 7. 8 MS: 404 (M⁺) (100), 386 (41), 371 (20), 275 (53), 245 (51), 180 (43), 135 (72), 95 (82), 59 (18). Exact mass calcd. for $C_{26}H_{44}O_3$ 404.3290, found 404.3272. ¹H NMR (CDC1₃) 5: 0.52 (3H, s, 18-CH₃), 0.92 (3H, d, J=6.9 Hz, 21-CH₃), 1.21 (6H, s, 26-CH₃ and 27-CH₃), 4.02 (1H, m, 3-aH), 4.06 (1H, m, 1β-H), 5.83 (1H, d, J=11.6 Hz, 7-H), 6.29 (1H, d, J=10.7 Hz, 6-H). UV (in EtOH) λ_{max} 243 (£15,100), 251.5 (£ 17,400), 261 (£12,600).

(Received in USA 1 February 1990)